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ABSTRACT

We have developed anew theory to calculate the steady state temperature profile in
a cylindrical sample positioned along the entire axis of a cylindrical microwave
cavity. Temperature profiles were computed for alumina rods of various radii
contained in a cavity excited in one of the TMn0 modes withn =1, 2 or 3. Sample
surface and center temperatures will be presented as a function of total sample
absorbed power or electric field strength at the sample surface. An approach for
attaining more uniform heating within the sample by reducing the magnitude of the
inverted temperature profile using a concentric outer cylindrical tube will be
discussed. Also, parametric studies will be reported for model calculationsin which
the total hemispherical emissivity was varied at boundaries of the sample and
surrounding tube and at the cavity wall. The results will be discussed in the context
of controlling both the average sample temperature and the temperature distribution
in the sample during microwave processing.

INTRODUCTION

Realistic models of microwave cavity reactors that provide accurate and rapid
predictions of thermal and electromagnetic characteristics for materials processing
have been developed recently. Some features of the models will be described in
this paper, and calculated results that demonstrate their usefulness will be
presented. The results can be applied in exploring new configurations for
microwave reactors, predicting and controlling processing conditions, and
designing and optimizing new reactors.

In previous work { 1,4 Jwe have treated a sphericalsample in a rectangular cavity
using a spherical shell mode] for the sample. Electromagnetic fields were calculated
using methods that were improvements over ordinary cavity perturbation theory,
but which still were not exact. Results of the electromagnetic shell model were
combined with thermal equations in calculating properties of both the sample and
the rcactor as awhole. Those proper-tics included the Q of the cavity, and power
absorption distributions and temperature profiles in the sample under both steady
state and transient conditions.




In later work [S], we treated a cylindrical sample in a cylindrical cavity using a
cylindrical shell model. Exact formulas for normal mode frequencies, quality
factors, electromagnetic fields and for power absorption distributions in the sample
were derived under idealized conditions in which the cavity walls were assumed to
be perfect electrical conductors.

This paper addresses the problem of extending the cylindrical shell model to
calculate temperature profiles inside microwave reactors. This new theory contains
several noteworthy features. First, the finite electrical conductivity of the cavity
walls is taken into account accurately. Second, redlistic values of thermal
emissivity are taken into account at solid boundaries inside the cavity and at the
cavity walls. Third, effects of both direct microwave heating of the sample and
radiant heating of the sample by a microwave heated tube that surrounds it are
incl rL]Jded Idnel the model. That is, hybrid heating of the sample can be accommodated
in the model.

Asinour earlier work a combination of analytic and numerical approached is used
in solving the problem. The main elements of the theory will be described next.
Then calculated results will be presented and discussed in the context of materials
processing. Our conclusions will be presented in the final section.

Tt IEORY

The geometry of the cylindrical shell .
model is shown in Fig. 1 for the case D RRERE R Dy
where a microwave-heated tube Z
surrounds the cylindrical sample.
Interior regions of both the. sample and
tube are partitioned into radially thin
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curved cavity wall, which is infinitely :-»‘ P

thick in the model. TN

Solution of the electromagnetic problem
was divided into two steps. In the first Fig. 1. Geometry of cylindrical shell
step, the flat end plates of the cavity were model.

treated as perfect electrical conductors. Then by applying a technique described in
our earlier work, we found, exact solutions of Maxwell’s equations with
harmonically varying fields e ™! and subject to appropriate bounding conditions.
The method of solution involved expanding the fields in each zone in terms of
cylindrical Bessel functions./, and cylindrical Neumann functions Y,. In the
curved cavity walls, zone N+1, the solutions can contain only outgoing waves




corresponding to cylindrical Hankel functions of the first kind,ll,(l) =J,+iY,,

since no energy propagates inward form infinity. Using this observation, we were
able to include the curved cavity wallsin the part of the model that could be treated
exactly.

Normal mode frequencies, which were in general complex-valued, were calculated
by finding the zeros of a complex-valued deterininant of a certain 4x4 matrix,
having 4 rows and 4 columns. Subsequently, the cigenfunctions of the 4x4 matrix
were calculated, and these eigenfunctions provided input for applying a stepwise
procedure to evaluate the expansion coefficients that occur in formulas for
electromagnetic fields in each zone. For a TM(pn() mode the electric and magnetic
fieldsin zone j are given by:

EL(r)=2[c] Jo(2p) + diYo(2p)|2 (9
Hi(r)= %}%[c’ To(Ap)+ ) vi(ap)]e. 2)

Here ¢/ and d/ are expansion coefficients, and J§ and ¥, arc derivatives of
functions with respect to their arguments. Also, (p, 8, z) are cylindrical coordinates
with origin at the center of the bottom end plate of the cavity. These formulas for
the fields can be used to find formulas that can be used to evaluate the power
absorbed in each zone and the time average energy stored in each zone.

In the second step of the electromagnetic problem, the finite conductivity of the
cavity end plates was taken into account using the surface resistance approximation.
In this approximation, the time average microwave power W absorbed at a surface
Soisgiven by

1 *
W= Ry [, (r)e 1] (r)is. (3)

A
0

11,(r) is the tangential component of the magnetic field found in Step 1, and & is
the surface resistance given by '

I
R =, 4
57 5B, (4)

where o is the electrical conductivity of the end plate material and 6‘\, is the
penetration depth
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The integra in Eq. (3) can be evaluated analytically for the case we are considering,
and this provided an explicit formula for power adsorption in the two end plates.

The formulas described so far can be used to accur ately calculate total time average
power absorbed inside the cavity and in the cavity walls. The formulas can also be
used to calculate the total Q of the cavity containing the sample and the contributions
to the total Q and total absorbed power made by the sample, by a tube that may
surround the sample, and by the cavity walls.

Next the solution of the electromagnetic problem was combined with a thermal
model to calculate temperature profiles. U rider stcady state conditions, the general
forms of the thermal equations are

v q(n= P (6)
q(r)=-xkVI(r). (7)

In each zone the heat source P(r) was taken to be a constant equal to the microwave
power absorbed per unit volume averagedover the volume of the zone and
averaged over time. The thermal conductivity k was approximated as a linear
function of temperature in each zone. The continuity of K atevery zone boundary
interior to the sample or tube was enforced. In the model, heat is transferred across
the surfaces of the sample, tube, and cavity walls by thermal radiation only, and
that is calculated in a gray body approximation.

The interior faces of the end plates are assumed to be perfect reflectors of thermal
radiation, a condition that can be closely approximated in a real reactor by using
highly polished, shiny surfaces. This assumption greatly simplifics the problem of
solving the thermal equations. More specifically, it implics that the thermal
radiation formula for two infinitely long cylinders, viz.,

_ oA - 7;) ®)
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can be applied here.

The steady state thermal equations have been solved anal ytically for each zone, and
these solutions must be used with appropriate boundary conditions on temperature



and heat current at zone interfaces. The formal solution of the thermal problem
must be combined self-consistently with the electromagnetic equations. This can be
accomplished by using an iteration procedure. The therma and electromagnetic
equations are coupled in two ways: (i) the complex dielectric constant is in general a
function of temperature; and (ii) power absorbed in each zone is a source of heat in
the thermal equations. Some results calculated with this self-consistent procedure
will be discussed next.

DISCUSSION

A parametric study of the temperature within a cylindrical cavity containing a
cylindrical rod aligned along the cavity axis and a tube concentric to the sample was
performed using this new theory. “I’he cavity radius, Pc = 4.69 c¢m, and length, L.-
6.63 cm, correspond to a 2.45 GHz resonant frequency for an empty cavity TM(Q10
mode. These dimensions are the same as in our previous microwave power
absorption study [5].In this investigation, the lemperature dependent properties of
alumina were used for all rods and tubes [6,7]. The caculations were performed
onaCray computer generally using 8 zones for the rod and?2 to 8 zones for the
tube. The parameters computed included the electric field strength at the surface of
the rod, the temperature profile within the rod and tube, the power absorbed in the
cavity walls, rod and tube, and the resonant frequency of the cavity.

A nominal set of experimental parameters was chosen for the present calculations.
The nominal alumina rod radius and emissivity values were a =- 0.2 cm (a/pc =
().043) and €5 =0.31 respectively. The input power was P =100 W into the cavity
for the TM()1() mode and the cavity walls were copper with an emissivity of&w =
0.025. The tube thickness, mid-radius and inner and outer surface emissivities
wered = O. 1 cm, rmid = 0.4 cm and €t; = €1, = 0.31 respectively. The following
graphs correspond to varying onc of the parameters while holding the remaining
nominal parameters constant unless stated otherwise.

The temperature profile within the rod using the nominal parameter set is shown in
Fig. 2 for the first three TMOn() modes. For this small diameter rod, the average
temperature and the temperature gradient within the rod both increase with mode
number. The average rod temperature for the TM()3() was calculated to be = 150 C
higher than the TM(10 while the temperature gradient was 35 C for the TM(30
mode compared to only 20 C for the TM( 10 mode. These gradients become
significantly larger as the rod diameter was increased.

The cavity wall emissivity plays a very important role in determining the final
temperature of the rod as shown in Fig. 3. Asthe wall emissivity approaches zero,
more of the energy, radiated to the. wall from the tube and the rod, is reflected back
leading to an increase in the rod (and tube) steady state temperature. The presence
of th)etubc significantly increases the rod temperature for larger wall emissivities (>
0.05).
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Fig. 2. Rod temperature profile for
three lowest TMOn() modes.
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The rod emissivity effects the rod temperature in a manner similar to the cavity wall
emissivity. Figure 4 shows the dependence of the rod center and surface
temperatures on the rod emissivity with and without the tube present. Again the rod
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temperature rises sharply as the emissivity is reduced. However, in contrast to the
cavity wall emissivity, the tube increases the 1od temperature only at higher
emissivity values (> 0.25).

The effect of the emissivity of the inner and outer surfaces of the tube on the rod
temperature was also investigated. Figure 5 shows the strong dependence of the
rod center and surface temperatures on the tube emissivities. The tube inner surface
emissivity has a dightly stronger effect on the rod temperatures than the tube outer
surface. These calculations indicate that the rod temperature can be increased by
amost 300 C by reducing the emissivity of the alumina tube inner surface to O. 1.
This reduction could possibly be accomplished by coating the tube with a low
emissivity material that adheres to alumina at high temperatures.
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Figure 6 shows the center and surface temperatures of the rod with and without the
tube present as a function of the power introduced into the microwave cavity. With
the tube present, there is only a small 50 C increase in the center and surface
temperatures at a 100 W power level. ‘I’hefact that the tube has little effect on the
rod temperature is associated with the chosen nominal parameter set. The effect of
the tube becomes more significant as the rod radius is reduced as shown in Fig. 7
where the power has been fixed at 30 W. ‘I" he presence of the tube actually reduces
the temperature of the rod for radii in the range ().()17 cm<a< 0.17 cm. For
smaller or larger rods, the tube increases the temperature of the rod. ‘1’ here is a
critical rod radius (a = 0.025 cm) that leads to a maximum isolated rod temperature
(= 1480 C). Of particular interest is the small rod region, below the critical radius,
which is relevant (o the microwave. processing of fibers. In this region the
temperature of an isolated fiber is significantly reduced from the peak temperature.




However. the fiber temperature remains relatively constant (900 C< T < 1100 C)
with a tube surrounding’ [he fiber.

From the results of the nominal 2000 ————1——v—p—T——

parameter set study, we have chosen - =
an optimum parameter set for heating a
rod. This parameter set only differed
from the nomina set in that the TM(3(
mode is used and the emissivity of the
tube surfaces is set at 0.1 which is a
technically achievable value. Figure 8
shows the rod center and surface
temperatures as a function of power
into the cavity for the nominal 0.2 cm

radius rod and a 20 pm radius fiber o
that is 100 times smaller. This 0 20 40 60 80
calculation indicates that with this POWE R (W)

optimum parameter set the rod can be
heated to melting with less than 80
watts. Furthermore, the fiber can
reach a temperature above 1500 C
using this same power level.
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CONCI,IJSIONS

We have developed asteady state microwave model for acylindrical rod
situated along the entire axis of a cylindrical cavitv. The model was applied to the
microwave heating of an isolated rod as well as the hybrid heating of a rod
surrounded by a microwave heated tube. A parametric microwave heating study
was performed for samples ranging fiom fibers to large rods. This study
demonstrated that by optimizing the experimental parameters, efficient
microwave/hybrid heating of fibers and rods can be achieved. ‘These results should
support future economical development of commercial microwave processing
applications.
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